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a b s t r a c t

This paper deals with the application of the concept of targeted energy transfer to the

field of acoustics, providing a new approach to passive sound control in the low

frequency domain, where no efficient dissipative mechanism exists. The targeted

energy transfer, also called energy pumping, is a phenomenon that we observe by

almost irreversible transfer of vibration energy from the linear system to the auxiliary

nonlinear one, where the energy is finally dissipated. In this study, an experimental set-

up has been developed using the air inside a tube as the acoustic linear system, a thin

circular visco-elastic membrane as an essentially cubic oscillator and the air inside a

box as a weak coupling between those two elements. In this paper, which mainly deals

with experimental results, it is shown that several regimes exist under sinusoidal

forcing, corresponding to the different nonlinear normal modes of the system. One of

these regimes is the quasi-periodic energy pumping regime. The targeted energy

transfer phenomenon is also visible on the free oscillations of the system. Indeed, above

an initial excitation threshold, the sound extinction in the tube follows a quasi-linear

decrease that is much faster than the usual exponential one. During this linear decrease,

the energy of the acoustic medium is irreversibly transferred to the membrane and then

damped into this element called nonlinear energy sink. We present also the frequency

responses of the system which shows a clipping of the original resonance peak of the

acoustic medium and we finally demonstrate the ability of the nonlinear absorber to

operate in a large frequency band, tuning itself to any linear system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

To reduce the level of noise and vibration that arises in many engineering applications, specific devices called ‘‘dynamic
absorbers’’ or ‘‘absorbers’’ are often used. In Acoustics, classical absorbers are porous materials for high frequencies and
Helmholtz resonators for low frequencies. In mechanics, the most popular device is the tuned mass-damper system known
as the Frahm absorber. Most of these absorbers are linear devices [1–6] that rely on the anti-resonance concept. It has been
recently established that the use of a pure nonlinear absorber, consisting of a mass with an essentially nonlinear spring,
can provide a useful alternative solution to reduce vibrations. The dynamics of such a nonlinear absorber associated to a
linear primary system, which differs radically from those of classical linear absorbers, have been described in detail in
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[7–11] in terms of resonance capture and nonlinear normal modes. The first experimental demonstration of these
behaviours was described in [12]. The principle consists in placing the absorber in a situation where an irreversible transfer
of vibration energy occurs from the linear system to the absorber. This energy is finally damped in the absorber. The result
is an efficient cancellation of the vibrations in the linear system, since the motion gets localized in the absorber. This
phenomenon is called targeted energy transfer or energy pumping in the literature.

One interesting feature of these nonlinear absorbers is the fact that they operate in a given large frequency band, instead
of ‘‘close to a single frequency’’, as in the case of classical Frahm absorbers or Helmholtz resonators. Indeed, it is worth noting
that, since the spring of the absorber is essentially nonlinear, this system has no natural frequency. One of the drawbacks of
nonlinear absorbers is the fact that the irreversible energy transfer occurs only when the primary linear system reaches a
certain vibration energy threshold. This can be a limitation in the case of some practical applications. Systems in which a
nonlinear oscillator is coupled to various kind of linear primary systems have been previously studied: a wave guide [13],
a rod [14–16], a beam [17], a plate [18], a two degrees of freedom (dof) linear system [19] or a linear chain of coupled
oscillators [20]. In the field of engineering, the application of targeted energy transfer phenomena has been explored to
control aeroelastic instabilities [21,22], for seismic mitigation in civil engineering [23,24] and to stabilize drill-string systems
[25]. Moreover some investigations have been done about the kind of nonlinearity: vibro-impact absorber [26], non-
polynomial nonlinearity [27], multidegree of freedom nonlinear absorber [28–31]. Further details about the theory and the
advantages and drawbacks of such nonlinear absorbers can be found in a recent book by Vakakis et al. [32].

In the present study, the primary linear system is an acoustic medium and the nonlinear absorber is a thin visco-elastic
membrane which is connected to the acoustic medium and is subjected to very large oscillations, i.e. very larger than the
thickness of the membrane. Using an improved version of the experimental set-up presented in [33], we investigated the
targeted energy transfer occurring between the acoustic medium and the membrane during both the sinusoidal forced
regime and the free oscillations. The experimental data were analysed using various tools and methods (wavelet transform,
frequency–energy plot, energy exchange diagram) so as to demonstrate and characterize the transfer. A simple two dof
model has also been developed and the predictions of this model have been compared with the experimental data.
Moreover the different frequency responses of the system have been experimentally measured and numerically simulated.
Finally, by changing the primary acoustic system, the last part of the present study demonstrates the ability of the
membrane to operate in a large frequency band tuning itself to several different resonance frequencies. All these results
pave the way to design new kinds of passive vibro-acoustical absorbers in the low frequency domain where no efficient
dissipative mechanism exists.
2. The system under investigation

2.1. The classical two degrees of freedom mechanical system

To analyse the targeted energy transfer, many authors have used simple mechanical systems with two degrees of
freedom. A mass and a linear spring stand for the linear system to be protected, and a mass associated with an essentially
nonlinear spring and a damper stands for the dynamic absorber. A weak coupling spring is placed between the two
oscillators as shown in Fig. 1. Because the nonlinear oscillator is connected to the ground, this configuration is referred to
as the ‘‘grounded configuration’’. Targeted energy transfer typically occurs when the mass of the nonlinear system is of the
same order as the mass of the linear oscillator and when the stiffness of the coupling between the two oscillators is small.

Let u1(t) and u2(t) be the displacement of the masses, and assuming a cubic restoring force by the nonlinear spring, the
governing equations (nondimensional form) of the grounded configuration are

€u1þa _u1þu1þbðu1�u2Þ ¼ 0;

c €u2þd _u2þeu3
2þbðu2�u1Þ ¼ 0; (1)

where b is a small coupling coefficient, c is the mass ratio, a and d are, respectively, the damping factors in the linear and
nonlinear oscillators and e is the cubic stiffness coefficient.
linear oscillator nonlinear oscillator

u1 (t) u2 (t)

Fig. 1. The grounded two dof mechanical system classically used to study the energy pumping phenomenon.
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Despite its simplicity, a system of this kind has highly complex dynamics which have been thoroughly studied in [34–43].
Without going into detail, we recall that its dynamics can be enlighted by analysing the two nonlinear vibrating modes of the
undamped system and the transition between these two modes. It should be added that some of these references deals with
non-grounded configurations, where a small mass is directly connected to the linear mass via a cubic spring. This is not of
great importance, since the behaviour of the grounded and non-grounded configuration is very similar.
2.2. The vibro-acoustical experimental set-up

2.2.1. Principle

The simple two dof spring-mass system described above served here as a basis for designing an experimental set-up
(Fig. 2) in which the primary system is an acoustic medium.

As the linear primary system, we consider the first acoustic mode of an open/open tube having length L and section St.
When the air inside the tube vibrates on this mode, the acoustic pressure is almost zero at the ends of the tube and
maximum at the centre, whereas the velocity of the air is maximum at the ends and zero at the center. A discrete simplified
representation of this vibrating mode can be obtained by considering two concentrated masses of air that move with the
same amplitude but in opposite directions at the ends of the tube, and are connected by a spring representing the
compressibility of the air. This constitutes an analogy of a one degree of freedom mechanical spring-mass system. The aim
is then to act on that system, thanks to a nonlinear absorber, in order to reduce its vibrations. Today, the design of a purely
acoustic system that would reproduce an analogy to a mechanical nonlinear absorber is still an open question. In this
study, the nonlinear absorber is a mechanical one: it is a simple thin circular visco-elastic membrane that performs very
large amplitude oscillations in order to obtain an almost purely cubic response. The coupling between the tube and the
membrane is ensured acoustically by the air in a coupling box, which is sufficiently large to give a weak linear coupling
stiffness.
2.2.2. The set-up realization

The experimental set-up based on these principles has been realized and made it possible to observe the targeted
energy transfer (energy pumping) phenomenon from the acoustic medium to the visco-elastic membrane (Fig. 3).

In practical terms, the tube (the linear system) is an interchangeable U-shaped tube so that its length L can be adjusted
between 1.5 and 2.5 m. The first resonance frequency corresponding to these lengths therefore ranges between around 75
and 120 Hz. Since the diameter of the tube d=94 mm is small in comparison to L, the tube could be either straight or
U-shaped. The volume of the coupling box is V2=27�10�3 m3. The device which holds the membrane allows to change the
diameter of the working part from 40 to 80 mm. A sliding system is used to apply a constant in-plane pre-stress to the
membrane. Once the pre-stress is set, the membrane is clamped to the supporting device. The material used is latex and
silicone, with a Young’s modulus of about 1.4 MPa, a Poisson’s ratio of about 0.49 and a volume mass density of about
1000 kg m�3. Various thicknesses h ranging between 0.18 and 1 mm have been tested.

For the excitation of the tube, we use an acoustic source consisting of a loudspeaker and a coupling box which is
connected to the entrance of the tube. An analyser controls the excitation and collects two measurements: the acoustic
pressure at the center of the tube (microphone) and the velocity of the center of the membrane (laser vibrometer).
It should be noticed that this set-up is an improved version of the one presented in a previous paper [33]. Thanks to this
improvement, we have now more possibilities to vary the different physical parameters, a better control of them and a
better clamped limit condition for the membrane (see Fig. 3).
2.3. Associated models

In this section, we present a simple model for the experimental set-up described above. The acoustic medium and the
nonlinear absorber are both modelled as single dof spring-mass systems, leading to a two dof system.
Fig. 2. Scheme and principle of the set-up.
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Fig. 3. Scheme and picture of the set-up.
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2.3.1. The tube

Because the length of the tube is large in comparison with its diameter, the system is assumed to be one-dimensional.
Let uair(x,t) and p(x,t) be the acoustic displacement and the pressure, respectively. The motion of the air in the tube is
governed by the following conservation equation and constitutive law:

ra

q2uair

qt2
¼�

qp

qx
and p¼�rac2

0

quair

qx
; (2)

with the boundary conditions p(0,t)=p1(t) and p(L,t)=p2(t). Here, ra is the density of the air and c0 is the sound wave
velocity. To apply a one dof Rayleigh–Ritz reduction, we write these equations in the following variational form:Z L

0
raSt

q2uair

qt2
duair dx¼�

Z L

0
raStc

2
0

quair

qx

qduair

qx
dx�p2ðtÞStduairðL; tÞþp1ðtÞStduairð0; tÞ; (3)

and we take a shape function for uair(x,t) which is exactly the first acoustic mode of the tube. We denote by ua the
displacement of the air at the end of the tube (x=L). It is positive when the air goes out:

uairðx; tÞ ¼ uaðtÞ �cos
px

L

� �� �
; duairðx; tÞ ¼ duaðtÞ �cos

px

L

� �� �
: (4)

The Rayleigh–Ritz reduction yields the following differential equation:

raStL

2

� �
€uaþ

raStc2
0p2

2L

� �
ua ¼�p1St�p2St : (5)
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Fig. 4. Scheme of the membrane.
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We now account for the damping of the mode by introducing a viscous term with a coefficient cf. Finally, we get

ma €uaþcf _uaþkaua ¼�p1St�p2St ; (6)

where

ma ¼
raStL

2
; ka ¼

raStc2
0p2

2L
: (7)

2.3.2. The membrane

Under the pressure applied by the air in the coupling box, the thin visco-elastic circular clamped membrane performs
large amplitude oscillations. Typically, the displacement at the center can be about 10 mm, which is 10–30 times larger
than the membrane thickness. For the modeling (see Fig 4), we consider the nonlinear plate equation of the Von-Karman
type (large displacements, small strains and moderate rotations) taking account of a constant in-plane pre-stress. Since the
problem is axisymmetric, the displacement field is written as

uðr;y; zÞ ¼ uðrÞ�
qwðrÞ

qr

� �
erþwðrÞez: (8)

The corresponding strain field tensor is E = e + zk, where the components of the generalized tension and bending strain
tensor e and k read

err ¼
qu

qr
þ

1

2

qw

qr

� �2

; eyy ¼
u

r
; ery ¼ 0;

krr ¼�
q2w

qr2
; kyy ¼�

1

r

qw

qr
; kry ¼ 0: (9)

The material of which the membrane is composed is assumed to obey a simple Kelvin–Voigt constitutive law. The stress
tensor S, the strain tensor E and the velocity strain tensor _E are related as follows:

S¼D : ðEþZ _EÞ; (10)

where Z is the viscous parameter and D is the fourth-order isotropic elastic tensor depending on Young’s modulus E and
Poisson’s ratio n.

The generalized stress tensor (tension and bending) is accordingly

Nrr ¼
Eh

1�n2
errþneyyþZ _err þn _eyyð Þ
� �

;

Nyy ¼
Eh

1�n2
eyyþnerrþZ _eyyþn _errð Þ
� �

;

Nry ¼ 0;

Mrr ¼
Eh3

12ð1�n2Þ
krrþnkyyþZ _krr þn _kyy

� �� �
;

Myy ¼
Eh3

12ð1�n2Þ
kyyþnkrrþZ _kyyþn _krr

� �� �
;

Mry ¼ 0: (11)
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The displacement u0, the strain e0 and the stress N0 associated with the constant pre-strain e0 applied to the mem-
brane are

u0ðrÞ ¼ e0r; e0
rr ¼ e0

yy ¼ e0; N0
rr ¼N0

yy ¼
Eh

1�n e0: (12)

We now write the governing equation of the membrane using the virtual work principle:

�

Z
Sm

ððN0þNÞdeþMdkÞdSþ

Z
Sm

p2dw dS¼

Z
Sm

rmh €wdw dS: (13)

Once again, we apply a Rayleigh–Ritz reduction with a single parabolic shape function to describe the transversal
displacement of the membrane. The degree of freedom qm(t) is the transversal displacement of the center of the
membrane.

wðr; tÞ ¼
R2�r2

R2

� �
qmðtÞ; uðr; tÞ ¼ 0;

dwðr; tÞ ¼
R2�r2

R2
dqðtÞ; duðr; tÞ ¼ 0: (14)

This gives the following one dof differential equation for qm(t):

mm €qmþk1½ð1þwÞqmþZ _qm �þk3ð2Zq2
m
_qmþq3

mÞ ¼
Sm

2
p2ðtÞ; (15)

where

mm ¼
rmhSm

3
; k1 ¼

2pEh3

3ð1�nÞR2
;

k3 ¼
8pEh

3ð1�n2ÞR2
; w¼ 3R2e0

h2
: (16)

The coefficients k1 and k3, respectively, stand for the linear and nonlinear stiffnesses. The parameter w is the ratio
between the pre-strain e0 and the (strain) buckling load of the membrane. The exact strain buckling load of a circular

clamped plate is 14:68h2=12ð1þnÞR2. Here, we get an approximate value h2=3R2 because of the parabolic shape function.
The linear stiffness is zero when w¼�1 (buckling) and it increases with positive values of w. The term 1þw can be also be

rewritten in the form ðf1=f0Þ
2, where f1 is the first resonance frequency of the membrane with pre-stress and f0 the

resonance frequency of the membrane without pre-stress: f0 ¼ ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0154p4Eh2=12ð1�n2ÞraR4

q
(as demonstrated in

the book [44, table 2.1]). Since f1 can be measured experimentally and we have an analytical expression for f0, we prefer to

use the ratio f1=f0 in the following.
It should be noted that the parabolic shape function shows a good fit with the description of the large amplitude

oscillations, but not with the small amplitude ones or the buckling deflection. For instance, the zero slope condition is not
even satisfied at the clamped boundary. In order to improve the linear part of this one dof model, we take the following
modified expression of k1:

k1 ¼
1:0154p5

36

Eh3

ð1�n2ÞR2
; (17)

so that k1=mm now corresponds to the first eigenvalue ð2pf0Þ
2 of the circular clamped plate.

2.3.3. The coupling box

The volume of the coupling box is chosen large enough to behave like a weak coupling, but its dimensions remain small
enough, in comparison to the considered range of wavelength (around 4 m), to assume that the pressure p2 inside the box
is spatially constant. This pressure is related to the relative variation of the volume DV2=V2 due to the motion of the
membrane and of the air inside the tube as follows:

p2ðtÞ ¼ rac2
0

DV2

V2
¼ kb StuaðtÞ�

Sm

2
qmðtÞ

	 

with kb ¼

rac2
0

V2
: (18)

2.3.4. The excitation

For the sake of simplicity, we do not model the box at the entrance of the tube, the loudspeaker and the system that
supply the loudspeaker. We assume that this excitation system provides a periodic pressure:

p1ðtÞ ¼ P1cosðOtÞ (19)

that acts as a source at the entrance of the tube with an amplitude P1 and a frequency O.



ARTICLE IN PRESS

R. Bellet et al. / Journal of Sound and Vibration 329 (2010) 2768–27912774
2.3.5. The final dimensional and non-dimensional two dof system

Inserting expressions (18) and (19) into Eqs. (6) and (15), we obtain the following final two dof system:

ma €uaþcf _uaþkauaþStkb Stua�
Sm

2
qm

� �
¼ FcosðOtÞ;

mm €qmþk1
f1

f0

� �2

qmþZ _qm

" #
þk3½q

3
mþ2Zq2

m
_qm�þ

Sm

2
kb

Sm

2
qm�Stua

� �
¼ 0: (20)

Nondimensional quantities are introduced by normalizing qm with the membrane thickness h and ua with h and a section
ratio for ua. The time is normalized with the first frequency of the tube o:

q¼
qm

h
; u¼

ua

h

2St

Sm
; t¼ot with o¼ c0p

L
: (21)

Inserting these quantities into Eqs. (6) and (15), taking (18) and (19) into account, we finally obtain the following non-
dimensional two dof system:

d2u

dt2
þl

du

dt þuþbðu�qÞ ¼ Fcos
O
ot
� �

;

gd2q

dt2
þc1

f1

f0

� �2

qþZodq

dt

" #
þc3 2Zoq2 dq

dt
þq3

� �
¼ bðu�qÞ; (22)

where

b¼
2StL

V2p2
; l¼

2cf

raStc0p
; g¼ 8

3

rmhSt

raLSm
;

c1 ¼
2 � 1:0154p

9ð1�n2Þ

Eh3LSt

rac2
0R6

; c3 ¼
64

3p3ð1�n2Þ

Eh3LSt

rac2
0R6

;

f0 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0154p4Eh2

12ð1�n2ÞrmR4

s
: (23)

This system differs from (1) on the following points:
�
 the nonlinear absorber does not show a pure cubic stiffness response. The normalized pre-stress w applied to the
membrane introduces a linear contribution.

�
 there are two damping terms in the equation for the nonlinear oscillator. The main term is the nonlinear contribution

2c3Zoq2dq=dt which corresponds to a viscous dissipation at large vibration amplitude.

Despite these differences, this system is able to clearly reproduce the targeted energy transfer when the w parameter is
not too large, the parameter g is equal to approximately unity and the coupling b is around 0.1.

2.3.6. Nonlinear normal modes

It has been shown that the energy pumping phenomenon is caused by a 1:1 resonance capture [8]. This can be enlight-
ened by looking at the nonlinear normal modes of the system (here we use the same notations as [45]). Using the harmonic
balance method, we express the motion in the form uaðtÞ ¼UcosðotÞ and qmðtÞ ¼QcosðotÞ. Introducing it into the system
(20) without the damping terms, with F=0 and neglecting the higher harmonics, we obtain the following algebraic system
for the amplitudes U and Q:

ð�mao2þkaþS2
t kbÞU�St

Sm

2
kbQ ¼ 0;

�mmo2þk1
f1

f0

� �2

þ
Sm

2

� �2

kb

 !
Q�St

Sm

2
kbU�

3

4
k3Q3 ¼ 0: (24)

This system can be easily solved in closed form and the curves of the solutions UðoÞ and Q ðoÞ calculated with the
configuration h=0.6, R=30 mm, f1 = 57 Hz are reported in Fig. 5. As the motions of the two oscillators are assumed to be
synchronous on the same frequency (1:1 resonance capture), we call the solution where ua(t) and qm(t) are out of phase
the nonlinear normal mode (NNM) S11� , and the solution where ua(t) and qm(t) are in phase the NNM S11+. Based on the
previous model, the energy E of the global system can be defined as follows:

EðoÞ ¼ 1

2
kaUðoÞ2þ 1

2
k1

f1

f0

� �2

Q ðoÞ2þ 1

4
k3Q ðoÞ4þ 1

2
kb StUðoÞ�

Sm

2
Q ðoÞ

� �2

: (25)
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The frequency–energy plot (Fig. 6) is then obtained by plotting the frequency versus the energy E with a log scale. The two
different NNMs S11� and S11+ and their coincidence for the low energies with the linear modes of the tube (horizontal
line at 92 Hz) and the membrane (horizontal line at 57 Hz) can be clearly seen in this figure. As we will see later on, this
frequency–energy plot is very useful to understand the energy pumping mechanism.
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2.4. Experimental verification of the cubic stiffness of the membrane

The second experimental set-up shown in Fig. 7 has been developed to characterize the stiffness of the membrane.
In the aim to measure the quasi-static relation between the pressure and the displacement of the membrane, we have
connected its attachment device on an airtight cavity. Thanks to an air pump, the static pressure inside the cavity could be
increased. The difference of the pressure inside and outside of the cavity is measured thanks to a differential pressure
sensor. A laser triangulation sensor measures the displacement of the center of the membrane (see Fig. 8).

Fig. 9 shows the amplitude response of the membrane (configuration h=0.18, R=40 mm) when the static pressure is
varying with three different pre-stresses. We clearly see that the stiffness is nonlinear, with a contribution depending
on the pre-stress. A cubic polynomial fit of the curves of Fig. 9 from the smallest to the strongest pre-stress gives
the results: ðSm=2Þp¼ 51:55qmþ6:19� 105q3

m, ðSm=2Þp¼ 68:65qmþ6:23� 105q3
m, ðSm=2Þp¼ 95:80qmþ5:87� 105q3

m. For
this configuration, the value of the parameter k3 (from the expression (16)) is 1.76�106 N m�3. Qualitatively, the pre-
stress mostly affects the linear part of the stiffness, while the cubic one remains almost constant. This behaviour is the one
expected from Eq. (15). Quantitatively, the theoretical value of k3 is three times the experimental one. This is not too
surprising since it is well known that a one dof reduced model is more stiff than the continuous model it comes from.
However, a comparison of the one dof model and a finite element plate simulation shows only a ratio of two on the value of
k3. The remaining difference can be explained by two other factors: first we compare a dynamical model with a static
experiment and second great uncertainties exist for the values of h, E and n which can vary the value of k3 of 730 percent.
As we could not measure the tension or the first natural frequency of the membrane on this set-up, the associated value of
the parameter k1 cannot be calculated.
3. Regimes observed experimentally under sinusoidal excitation

In Figs. 10, 11, 14–16 the first channel is the signal of the sinusoidal forcing sent to the loudspeaker, the second channel
is the acoustic pressure measured at the center of the tube and the third channel is the velocity of the center of the
membrane.

In this part, we focus on the behaviour of the system under sinusoidal excitation, at the frequency of the first acoustic
mode of the tube and with the set-up configuration: L=2 m, h=0.4, R=30 mm, f1=62 Hz. Due to the presence of a
nonlinearity, several types of behaviour are observed, depending on the level of the excitation.

When the excitation level is below a certain threshold S1, the regime observed is periodic (Fig. 10) and the vibration
energy is localized on the tube where the sound level is important whereas the membrane is inactive and has small
vibrations. Fig. 12(a) is simply a zoom of part of Fig. 10 showing the phases of the signals, and the same recording is
presented in Fig. 13(a) but in terms of displacements. To shift from the velocity _qm of the membrane to its displacement qm,
a simple integration is computed. And to shift from the acoustic pressure p at the center of the tube to the displacement ua

of the air at the end of the tube (z=L), we use the relation between amplitudes u0 and p0 presented above u0 ¼ p0L=rac2
0p

and the fact that ua and p are necessarily out of phase on the first acoustic mode of the tube. The relation between ua and p

is therefore uaðL; tÞ ¼�pðL=2; tÞL=rac2
0p. It can thus be seen that, in this regime, the displacement of the air at the end of the

tube ua and the displacement of the center of the membrane qm are synchronous at the same frequency and almost out of
phase. The system is therefore on the neighbourhood of the so-called nonlinear normal mode S11� . If the excitation level
is higher than a second threshold S2 ðS24S1Þ, the regime will also be periodic but the energy will be localized in the
Fig. 7. Picture of the experimental set-up used to characterize the membrane.
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Fig. 8. Picture of the membrane without (top) and with pressure (bottom).
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membrane which vibrates with large amplitudes (Figs. 11 and 12(b)). As can be seen from Fig. 13(b), ua and qm are still
synchronous at the same frequency, but they are now almost in phase. This regime corresponds therefore to a point in the
neighbourhood of S11+. Between these two thresholds, the regime is nearly periodic (almost quasi-periodic) with a slow
evolution of the amplitudes of both oscillators. We can see in Fig. 14 that the amplitude of the pressure at the middle of the
tube increases and decreases repeatedly in a regular fashion. For the amplitude of the membrane, we can distinguish
roughly two levels: a small one corresponding to the growth of the pressure, and a bigger one when the pressure amplitude
decreases. This alternating regime is referred to as a strongly modulated response in Chapter 6 of [32] where a detailed
analysis of the phenomenon is proposed, see also [46,47]. When the pressure in the tube decreases, the membrane
performs almost constant amplitude oscillations. The situation is here very similar to the one for free vibrations (Section 4)
where a quasi-irreversible transfer of energy occurs from the acoustic medium to the membrane. When the level of the
pressure gets below a threshold, the transfer is stopped and the pressure amplitude increases again.
4. Free oscillations observed experimentally

Since the energy pumping is an intrinsically transient phenomenon, this part deals with the behaviour of the system
under free oscillations with the configuration: L=2 m, h=0.6, R=30 mm, f1=57 Hz. Practically, a sinusoidal excitation at the
first resonance frequency of the tube is applied in order to put enough energy in the system. This excitation is suddenly
stopped, and then on, we observe the free oscillations of the system. Several illustrations are given in this part showing the
two different types of behaviour observed depending on the initial conditions.
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Fig. 10. Experimental result. Low excitation amplitude: periodic regime in the neighbourhood of S11� localized on the tube. Input voltage: A¼ 0:29 V.
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4.1. Time series

If at the initial instant of the free oscillations, the system vibrates close to S11� (low excitation amplitude: A¼ 0:5 V),
then the sound extinction in the tube will follow a natural exponential decrease (Fig. 15) and the NES will be inactive. But if
at the initial instant, the system vibrates close to S11+ (high excitation amplitude: A¼ 3:7 V), then the sound extinction in
the tube will follow a quasi-linear decrease, much faster than the exponential one, during which the membrane will still
vibrate with a large amplitude until the sound in the tube has been almost completely cancelled (Fig. 16). During this
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Fig. 12. Experimental result. Zoom onto Figs. 10 (12(a)) and 11 (12(b)) showing shape and phase of membrane velocity and acoustic pressure signals.
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phase, an irreversible energy transfer occurs from the tube to the membrane: the NES quickly captures the resonance of the
tube, localizes the energy of the acoustic medium and then damps it by viscosity in the membrane as well as by acoustic
radiation outside the set-up. From an analysis of the resonance bandwidths of the membrane, which is experimentally
measured with a low broadband excitation, we could quantify the sum of viscous damping and acoustic radiation damping.
On the other hand, we quantify the acoustic radiation damping of the membrane using the approach given in [48]. The
result is that the viscous damping is around 10 times larger than the acoustic radiation damping. The energy which has
been localized in the membrane is then mainly damped by viscosity. Note that, for this configuration, the excitation
thresholds S1 and S2 are around 1.8 and 2.2 V, respectively.
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Fig. 14. Experimental result. Intermediate excitation amplitude: quasi-periodic regime. Input voltage: A¼ 0:51 V.
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4.2. Evolution of the energy of the system

Thanks to the model presented above, we can define and compute the energy of the different elements of the system:

Etube ¼
1

2
ma _u

2
aþ

1
2kau2

a ;

Emembrane ¼
1

2
mm _q

2
mþ

1
4k3q4

m;

Ecoupling box ¼
1

2
kb Stua�

Sm

2
qm

� �2

;
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Fig. 15. Experimental result. Free oscillations with initial conditions close to S11� (low input voltage: A¼ 0:5 V): observation of an exponential decrease

for the acoustic pressure.
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Etotal ¼ EtubeþEmembraneþEcoupling box: (26)

Figs. 17 and 18 show the evolution of the energy and the percentage of the energy present in the tube and in the
membrane, which was computed from the time series given in Figs. 15 and 16. It appears clearly that in the first case
(Fig. 17) the energy always remains localized in the tube whereas the membrane is never active. But in the second case
(Fig. 18), the energy is entirely transferred to the membrane which localizes quickly almost 100 percent of the energy of
the system.
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Fig. 18. Experimental result. Evolution of the energy in the tube and the membrane for the time series shown in Fig. 16 (high input voltage: A¼ 3:7 V).
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4.3. Wavelet transform

The wavelet transform of the same time series gives another illustration about the evolution of the frequency content of
these signals. As can be seen in Figs. 19 and 20, the excitation in both cases is a single frequency signal on the resonance
frequency of the tube. Only the level is different. In Fig. 19 (initial conditions close to S11�), the frequency of the other two
time series can be seen to remain constant at that resonance frequency, nothing worth noting occurs. On the other hand, if
the initial condition is close to S11+, we can see in Fig. 20 that the acoustic pressure is quickly cancelled and from then on,
the frequency of the membrane drops down together with its energy (which is a characteristic of a cubic oscillator), leaving
the 1:1 resonance capture and then avoiding the return of the energy. Actually, this frequency decreases until it reaches the
first linear resonance frequency of the membrane, which in this case is 57 Hz.
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Fig. 19. Experimental result. Wavelet transform of the time series shown in Fig. 15 (low input voltage: A¼ 0:5 V).
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Fig. 20. Experimental result. Wavelet transform of the time series shown in Fig. 16 (high input voltage: A¼ 3:7 V).
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4.4. Frequency–energy plots

Computing the evolution of the total energy of the system Etotal and replacing the time axis by this total energy in the
previous frequency–time plot of Figs. 19 and 20, we can plot the frequency–energy plot corresponding to the experimental
time series. Superposing it on the nonlinear normal modes, we can clearly see which way is followed by the system. In the
first case (Fig. 21) where the system is initially close to S11� (which is clearly visible here), the extinction follows this
mode towards the low energy side. But in the second case (Fig. 22), the system is initially close to S11+ and then keeps
strictly to this mode until the energy has been completely cancelled. All the differences between the two mechanisms
observed here are due to the fact that the system follows one NNM or the other.
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5. Comparison between experimental and numerical results

Numerical simulations of free oscillations have been made from the model presented in Section 2. The parameters used
for these simulations were exactly the physical parameters of the set-up. Each of them has been measured excepted the
damping factor Z of the membrane. Only the value of that parameter has been fitted numerically in order to obtain the best
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match with the measurements. For each membrane used, the damping factor has been identified in this way, leading to
values in the range 10�3–10�4.

Despite of the very important acoustic levels that we have measured in the tube, the experimental set-up has been
designed so that most of nonlinear phenomena occur in the membrane, and are prevented in the source and the acoustic
resonator. This can be checked from the maximum value pmax of the pressure inside the resonator : it reaches about
1000 Pa, leading to a velocity vmax of about 2.5 m s�1 at each end of the tube. Thus, the adimensional factors pmax/Patm and
vmax/c0 are both below 10�2, ensuring that the linear acoustic assumption is valid. The main nonlinearity source could,
however, be the generation of ‘‘mushroom-shaped’’ vortices at the end of the tube. For a cylindrical port, previous work
[49] has shown that these must be considered as significant for velocities over about 10 m s�1. This has also been checked
by local measurements [50] which showed that indeed vortices may appear around a few m s�1 if the tube edges are sharp,
but that they remain localized close to these edges: the average velocity is therefore only marginally impacted by these
vortices (especially considering the relatively large area of our tube). Lastly, the loudspeaker itself has been selected so that
the membrane displacement which is required to reach the necessary level is within the linear displacement stated by the
manufacturer. It has then been checked that the pressure inside the coupling volume on the loudspeaker side does not
reflect a dramatic harmonic distortion.

Figs. 23 and 24 show the comparison between simulations and measurements of the free oscillations of the system after
a sinusoidal excitation at the resonance frequency of the tube. The first case corresponds to the following experimental set-
up: A¼ 1 V, R=20 mm, h=0.39 mm, Z¼ 0:00062 s, f1 ¼ 62 Hz, L¼ 2 m. The values of the other fixed parameters are:
c0=350 m s�1, Rt=47 mm, V2=27�10�3 m3, l¼ 0:014, rm ¼ 980 kg m�3, ra ¼ 1:3 kg m�3, E=1.48 MPa, n¼ 0:49. The second
case corresponds to a configuration with the same membrane but with a stronger initial excitation, a larger radius and a
different pre-stress: A¼ 3 V, R=30 mm, f1=73 Hz. In each case, the simulations were calculated adjusting the amplitude of
the input so that the amplitude of the initial numerical acoustic pressure is equal to the initial measured one. The input is
then reduced to zero at the instant when the experimental input signal is cut. We observe then that the simulations
provide a very good match with the measurements in both cases, especially for the acoustic pressure. The changes in the
behaviour of the system, induced by a different membrane radius and pre-stress, are accurately accounted for by the
model. In the case of the membrane velocity, the simulation gives in both cases the same global behaviour but with smaller
amplitude than the measured one. These results are fairly satisfactory, especially considering the rough approximations
that have been made in the modelling of the membrane. Our studies have shown that the numerical simulations, with any
other values of parameters (radius, pre-stress, thickness of the membrane, length of the tube, etc.), always follow the
experimental results with a similar level of accuracy as in the case of these two examples. That is to say that the behaviour
changes, induced by any change of parameter, observed numerically are in perfect agreement with those observed
experimentally.

6. Frequency aspects of energy pumping

In Section 3, we have presented the behaviour of the system under a sinusoidal forcing with a fixed frequency and a
varying amplitude. In Section 4, we have discussed the free vibration behaviour. Now let us look at the behaviour of that
acoustic medium coupled to a membrane when the frequency of the sinusoidal forcing varies. Because of the presence of
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Fig. 23. Experimental and numerical results. Comparison of the free oscillations between experimental data and simulations. Configuration 1: A¼ 1 V,

h=0.39 mm, R=20 mm, f1=62 Hz.
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Fig. 24. Experimental and numerical results. Comparison of the free oscillations between experimental data and simulations. Configuration 2: A¼ 3 V,
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a nonlinearity, we cannot talk about transfer function as the behaviour of the system depends on the amplitude of
excitation. Indeed as we see in Fig. 25, there are several kinds of frequency responses. The set-up configuration here is:
L=2.22 m, h=0.18, R=40 mm, f1=45 Hz. This figure shows the experimental normalized values of the amplitude of the
acoustic pressure in the tube divided by the amplitude of excitation during constant amplitude frequency sweeps. When
the level of excitation is lower than S1, the membrane remains inactive during the entire sweep and the system has only
the resonance peak of the tube without membrane (when the membrane is occulted, the peak does not change). For a level
between S1 and S2, a clipping of the peak appears. For frequencies below 85.5 Hz and above 89.5 Hz the sound level in the
tube is too low to activate the energy pumping and the frequency response is identical to that obtained for low levels. But
in between those frequencies, i.e. close to the acoustic resonance of the linear system, the level increases enough to set the
system on the quasi-periodic regime corresponding to the energy pumping and that creates a clipping of the peak. In that
frequency range, energy pumping prevents sound pressure from exceeding a certain level. When the excitation level is
higher than S2, the system has a frequency response with a new resonance peak. The resonance frequency of this peak is
smaller than the resonance frequency of the tube and the maximal amplitude is slightly lower than the maximal amplitude
of the resonance peak of the tube. Below 87.5 Hz, the vibration regime is periodic and the membrane is activated, vibrating
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in phase with the acoustic displacement. Between 87.5 and 91 Hz, the regime is quasi-periodic. And above 91 Hz, the
regime is also periodic, but the membrane is not activated, and the three curves are then combined. In a noise reduction
context, this frequency response is obviously much less interesting than the clipping peak produced by energy pumping,
but as we can see, that phenomenon cannot appear with too strong levels. Simulations of frequency responses have been
done from our model with the same configuration than experimentally. As we can see in Fig. 26, the three kinds of
frequency responses are also obtained with a correct correlation with experimental results.

Now, for the same set-up configuration, the frequency response is presented under the form of a surface, the practical
expression of energy pumping appears clearly as a level limitation. Fig. 27 shows the experimental results of successive
frequency sweeps under a large span of excitation levels. The results are presented under the form of a surface level of
acoustic pressure depending on the frequency and the excitation level. We recognize in the low excitation zone the
80 82 84 86 88 90 92 94 96 98
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

Pr
es

su
re

 a
m

pl
itu

de
 / 

In
pu

t l
ev

el

low input level
mid input level
high input level

Fig. 26. Numerical result. Simulations of frequency responses for the same configuration and observation of the same three kinds of responses (cf. Fig. 25).
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resonance peak of the tube. Naturally in this zone, the higher the excitation level, the higher the level of the peak. Between
excitation thresholds S1 and S2, a clipping of the top of the peak appears, and the sound level in the tube cannot exceed a
certain ceiling which is here around 150 dB. In this zone, when the level of excitation increases, the clipping of the peak
becomes larger and the sound level remains limited at the same maximum. The energy pumping acts then on the acoustic
medium as a level limitation. Above the excitation threshold S2, clipping is changed into a resonance peak slightly shifted
to low frequencies. This figure clearly shows an important property of energy pumping: it only exists inside a limited range
of excitation levels. The simulation of the surface has also been computed from the model (Fig. 28) and it shows a very
similar shape with a energy pumping ceiling which is a little lower (between 140 and 145 dB) than the experimental one.
We conclude this part by noticing that on this academic set-up, the limitation occurs at a very high acoustic levels 150 dB,
actually above the pain threshold of the human ear. In fact, we design the setup to study the physics of the phenomenon,
without a particular application in mind. However, in the view of applications, the level of limitation will have to be
adapted to the situation.

7. The self-tuning property

After presenting the main physical phenomena observed with the coupling of an acoustic medium to a nonlinear
oscillator, we present in this section a very important property of this nonlinear absorber: its ability to adapt and tune itself
to the resonance frequency of different linear systems. To demonstrate experimentally this property, we recorded the free
oscillations of the system with a given membrane configuration and three different lengths of the tube. Changing this
length, we change the linear primary system and its resonance frequency. The membrane configuration taken here is
h=0.39, R=30 mm, f1=52 Hz and the three lengths of the tube are 2.26, 1.8 and 1.55 m. These lengths correspond,
respectively, to the resonance frequencies 78, 99 and 112 Hz for the acoustic medium of the set-up. Fig. 29 shows the free
oscillations of the system after a sinusoidal forcing at the resonance frequency of the primary system for these three
lengths. The amplitudes of the forcing are chosen in order to have the same acoustic level in the tube (around 1000 Pa).
We observe that, even if the threshold of the energy pumping and the shape of the curves are different when changing the
length, the membrane remains able to capture the resonance of the primary system and to show a targeted energy transfer.

Secondly, in Fig. 30 the simulations of the frequency responses for these three cases are shown. For each length, we
present the frequency response of the system with a low amplitude sweep sinus forcing, to have the original resonance
peak of the acoustic medium (at 78, 99 and 112 Hz here), and with a higher enough amplitude to observe the clipping of
the peak. The important fact is that last observation has always been possible, with the three lengths and of course for any
intermediate length. The membrane, as an almost pure nonlinear oscillator, is able to work with any linear primary system
having their resonance frequency in a large frequency range, tuning itself on it. This property is an important advantage in
comparison to a linear tuned absorber which can only work at a single frequency.
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Fig. 29. Experimental result. Free oscillations of the system for three different linear primary systems (three different lengths of the tube) with the same

membrane configuration. (a) Length of the tube L=2.26 m. (b) Length of the tube L=1.8 m. (c) Length of the tube L=1.55 m.
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8. Conclusion

A first observation of targeted energy transfer in acoustics has been achieved in 2006 thanks to a simple set-up and has
been reported in a brief paper [33].

In the present paper, a substantially more complete study of targeted energy transfer between an acoustic primary
medium and a nonlinear membrane absorber is presented. The set-up used here consisted of a tube with variable length
(linear primary system), a coupling box and a visco-elastic membrane (nonlinear absorber) with a holding device allowing
to control the membrane radius and pre-stress. Thanks to it, numerous experimental results in agreement with the
literature are shown. Irreversible energy transfer was observed in both free and forced regimes as well as frequency
responses, using suitable presentations of experimental data such as wavelet transforms and frequency–energy plots.
A two dof Rayleigh–Ritz reduction technique with appropriate shape functions also yielded a simple but effective two
dof model which accurately matched the main experimental observations. Finally, and this is a main point, we have shown
experimentally that a given membrane absorber is able to work with various primary acoustic systems, tuning itself on
their different resonance frequencies. Considering that there is no existing efficient dissipative mechanism in acoustics for
low frequencies, this work gives very encouraging prospects towards the development a novel kind of low frequency
acoustic absorbers.
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